當前位置:首頁 > 百科知識 > 光通訊 > 正文

帶寬

帶寬應用的領域非常多,可以用來標識信號傳輸?shù)臄?shù)據(jù)傳輸能力、標識單位時間內通過鏈路的數(shù)據(jù)量、標識顯示器的顯示能力。 1. 在模擬信號系統(tǒng)又叫頻寬,是指在固定的時間可傳輸?shù)馁Y料數(shù)量,亦即在傳輸管道中可以傳遞數(shù)據(jù)的能力。通常以每秒傳送周期或赫茲(Hz)來表示。 2. 在數(shù)字設備中,帶寬指單位時間能通過鏈路的數(shù)據(jù)量。通常以bps來表示,即每秒可傳輸之位數(shù)。

帶寬在計算機系統(tǒng)中的意義

在計算機系統(tǒng)中,用帶寬作為標識總線和內存性能的指標之一。
總線帶寬指的是總線在單位時間內可以傳輸?shù)臄?shù)據(jù)總量,等于總線位寬與工作頻率的乘積。例如:對于64位、800MHz的前端總線,它的數(shù)據(jù)傳輸率就等于64bit×800MHz÷8(Byte)=6.4GB/s
內存帶寬指的是內存總線所能提供的數(shù)據(jù)傳輸能力。例如:DDR400內存的數(shù)據(jù)傳輸頻率為400MHz,那么單條模組就擁有64bit×400MHz÷8(Byte)=3.2GB/s的帶寬。
帶寬的應用

一、表示頻帶寬度
信號的帶寬是指該信號所包含的各種不同頻率成分所占據(jù)的頻率范圍。頻寬對基本輸出入系統(tǒng) (BIOS ) 設備尤其重要,如快速磁盤驅動器會受低頻寬的總線所阻礙。
二、表示通信線路所能傳送數(shù)據(jù)的能力
在單位時間內從網(wǎng)絡中的某一點到另一點所能通過的“最高數(shù)據(jù)率”。對于帶寬的概念,比較形象的一個比喻是高速公路。單位時間內能夠在線路上傳送的數(shù)據(jù)量,常用的單位是bps(bit per second)。計算機網(wǎng)絡的帶寬是指網(wǎng)絡可通過的最高數(shù)據(jù)率,即每秒多少比特。
嚴格來說,數(shù)字網(wǎng)絡的帶寬應使用波特率來表示(baud),表示每秒的脈沖數(shù)。而比特是信息單位,由于數(shù)字設備使用二進制,則每位電平所承載的信息量是以2為底2的對數(shù),如果是四進制,則是以2為底的4的對數(shù),每位電平所承載的信息量為2。因此,在數(shù)值上,波特與比特是相同的。由于人們對這兩個概念分的并不是很清楚,因此常使用比特率來表示速率,也正是用比特的人太多,所以比特率也就成了一個帶寬事實的標準叫法了。
描述帶寬時常常把“比特/秒”省略。例如,帶寬是1M,實際上是1Mbps,這里的Mbps是指位/s。[2]
在網(wǎng)絡中有兩種不同的速率:
1、信號(即電磁波)在傳輸媒體上的傳播速率(米/秒,或公里/秒)。
2、計算機向網(wǎng)絡發(fā)送比特的速率(比特/秒)。
這兩種速率的意義和單位完全不同。
在理解帶寬這個概念之前,我們首先來看一個公式:帶寬=時鐘頻率x總線位數(shù)/8,從公式中我們可以看到,帶寬和時鐘頻率、總線位數(shù)是有著非常密切的關系的。其實在一個計算機系統(tǒng)中,不僅顯示器、內存有帶寬的概念,在一塊板卡上,帶寬的概念就更多了,完全可以說是帶寬無處不在。
那到底什么是帶寬呢?帶寬的意義又是什么?為了更形象地理解帶寬、位寬、時鐘頻率的關系,我們舉個比較形象的例子,工人加工零件,如果一個人干,在大家單個加工速度相同的情況下,肯定不如兩個人干的多,帶寬就像是工人能夠加工零件的總數(shù)量,位寬仿佛工人數(shù)量,時鐘工作頻率相當于加工單個零件的速度,位寬越寬,時鐘頻率越高則總線帶寬越大,其好處也是顯而易見的。
主板上通常會有兩塊比較大的芯片,一般將靠近CPU的那塊稱為北橋,遠離CPU的稱為南橋。北橋的作用是在CPU與內存、顯卡之間建立通信接口,它們與北橋連接的帶寬大小很大程度上決定著內存與顯卡效能的大小。南橋是負責計算機的I/O設備、PCI設備和硬盤,對帶寬的要求,相比較北橋而言,是要小一些的。而南北橋之間的連接帶寬一般就稱為南北橋帶寬。隨著計算機越來越向多媒體方向發(fā)展,南橋的功能也日益強大,對于南北橋間的連接總線帶寬也是提出了新的要求,在INTEL的9X5系列主板上,南北橋的帶寬將從以前一直為人所詬病的266MB/S發(fā)展到空前的2GB/S,一舉解決了南北橋間的帶寬瓶頸。
 

顯卡中的帶寬

再來說說顯卡,玩游戲的朋友都知道,當玩一些大制作游戲的時候,畫面有時候會卡的比較厲害。其實這就是顯卡帶寬不足的問題,再具體點說,這是顯存帶寬不足。眾所周知,當?shù)赖腁GP接口是AGP 8X,而AGP總線的頻率是PCI總線的兩倍,也就是266MHz,很容易就可以換算出它的帶寬是2.1Gbps,這樣的帶寬就顯得很微不足道了,因為連最普通的ATI R9000的顯存帶寬都要達到400MHz*128Bit/8=6.4GB/s,其余的高端顯卡更是不用說了。正因為如此,INTEL在最新的9X5芯片組中,采用了PCI-Express總線來替代老態(tài)龍鐘的AGP總線,與傳統(tǒng)PCI以及更早期的計算機總線的共享并行架構相比,PCI Express最大的特點是在設備間采用點對點串行連接,如此一來即允許每個設備都有自己的專用連接,不需要向整個總線請求帶寬,同時利用串行的連接特點將能輕松將數(shù)據(jù)傳輸速度提到一個很高的頻率。在傳輸速度上,由于PCI Express支持雙向傳輸模式,因此連接的每個裝置都可以使用最大帶寬。AGP所遇到的帶寬瓶頸也迎刃而解。
 

總線中的帶寬

在計算機系統(tǒng)中,總線的作用就好比是人體中的神經(jīng)系統(tǒng),它承擔的是所有數(shù)據(jù)傳輸?shù)穆氊?,而各個子系統(tǒng)間都必須籍由總線才能通訊,例如,CPU和北橋間有前端總線、北橋與顯卡間為AGP總線、芯片組間有南北橋總線,各類擴展設備通過PCI、PCI-X總線與系統(tǒng)連接;主機與外部設備的連接也是通過總線進行,流行的USB2.0、IEEE1394總線等等,一句話,在一部計算機系統(tǒng)內,所有數(shù)據(jù)交換的需求都必須通過總線來實現(xiàn)!
按照工作模式不同,總線可分為兩種類型,一種是并行總線,它在同一時刻可以傳輸多位數(shù)據(jù),好比是一條允許多輛車并排開的寬敞道路,而且它還有雙向單向之分;另一種為串行總線,它在同一時刻只能傳輸一個數(shù)據(jù),好比只容許一輛車行走的狹窄道路,數(shù)據(jù)必須一個接一個傳輸、看起來仿佛一個長長的數(shù)據(jù)串,故稱為“串行”。
對串行總線來說,帶寬和工作頻率的概念與并行總線完全相同,只是它改變了傳統(tǒng)意義上的總線位寬的概念。在頻率相同的情況下,并行總線比串行總線快得多,但它存在并行傳輸信號間的干擾現(xiàn)象,頻率越高、位寬越大,干擾就越嚴重,因此要大幅提高現(xiàn)有并行總線的帶寬是非常困難的;而串行總線不存在這個問題,總線頻率可以大幅向上提升,這樣串行總線就可以憑借高頻率的優(yōu)勢獲得高帶寬。而為了彌補一次只能傳送一位數(shù)據(jù)的不足,串行總線常常采用多條管線(或通道)的做法實現(xiàn)更高的速度——管線之間各自獨立,多條管線組成一條總線系統(tǒng),從表面看來它和并行總線很類似,但在內部它是以串行原理運作的。對這類總線,帶寬的計算公式就等于“總線頻率×管線數(shù)”,這方面的例子有PCIExpress和HyperTransport,前者有×1、×2、×4、×8、×16和×32多個版本,在第一代PCIExpress技術當中,單通道的單向信號頻率可達2.5GHz,我們以×16舉例,這里的16就代表16對雙向總線,一共64條線路,每4條線路組成一個通道,二條接收,二條發(fā)送。這樣我們可以換算出其總線的帶寬為2.5GHz×16/10=4GB/s(單向)。除10是因為每字節(jié)采用10位編碼。
并行總線和串行總線的描述參數(shù)存在一定差別。對并行總線來說,描述的性能參數(shù)有以下三個:總線寬度、時鐘頻率、數(shù)據(jù)傳輸頻率。其中,總線寬度就是該總線可同時傳輸數(shù)據(jù)的位數(shù),好比是車道容許并排行走的車輛的數(shù)量;例如,16位總線在同一時刻傳輸?shù)臄?shù)據(jù)為16位,也就是2個字節(jié);而32位總線可同時傳輸4個字節(jié),64位總線可以同時傳輸8個字節(jié)......顯然,總線的寬度越大,它在同一時刻就能夠傳輸更多的數(shù)據(jù)。不過總線的位寬無法無限制增加。
總線的帶寬指的是這條總線在單位時間內可以傳輸?shù)臄?shù)據(jù)總量,它等于總線位寬與工作頻率的乘積。例如,對于64位、800MHz的前端總線,它的數(shù)據(jù)傳輸率就等于64bit×800MHz÷8(Byte)=6.4GB/s;32位、33MHzPCI總線的數(shù)據(jù)傳輸率就是32bit×33MHz÷8=133MB/s,等等,這項法則可以用于所有并行總線上面——看到這里,讀者應該明白我們所說的總線帶寬指的就是它的數(shù)據(jù)傳輸率,其實“總線帶寬”的概念同“電路帶寬”的原始概念已經(jīng)風馬牛不相及。
 

內存中的帶寬

除總線之外,內存也存在類似的帶寬概念。其實所謂的內存帶寬,指的也就是內存總線所能提供的數(shù)據(jù)傳輸能力,但它決定于內存芯片和內存模組而非純粹的總線設計,加上地位重要,往往作為單獨的對象討論。
SDRAM、DDR和DDRⅡ的總線位寬為64位,RDRAM的位寬為16位。而這兩者在結構上有很大區(qū)別:SDRAM、DDR和DDRⅡ的64位總線必須由多枚芯片共同實現(xiàn),計算方法如下:內存模組位寬=內存芯片位寬×單面芯片數(shù)量(假定為單面單物理BANK);如果內存芯片的位寬為8位,那么模組中必須、也只能有8顆芯片,多一枚、少一枚都是不允許的;如果芯片的位寬為4位,模組就必須有16顆芯片才行,顯然,為實現(xiàn)更高的模組容量,采用高位寬的芯片是一個好辦法。而對RDRAM來說就不是如此,它的內存總線為串聯(lián)架構,總線位寬就等于內存芯片的位寬。
和并行總線一樣,內存的帶寬等于位寬與數(shù)據(jù)傳輸頻率的乘積,例如,DDR400內存的數(shù)據(jù)傳輸頻率為400MHz,那么單條模組就擁有64bit×400MHz÷8(Byte)=3.2GB/s的帶寬;PC800標準RDRAM的頻率達到800MHz,單條模組帶寬為16bit×800MHz÷8=1.6GB/s。為了實現(xiàn)更高的帶寬,在內存控制器中使用雙通道技術是一個理想的辦法,所謂雙通道就是讓兩組內存并行運作,內存的總位寬提高一倍,帶寬也隨之提高了一倍!帶寬可以說是內存性能最主要的標志,業(yè)界也以內存帶寬作為主要的分類標準,但它并非決定性能的唯一要素,在實際應用,內存延遲的影響并不亞于帶寬。如果延遲時間太長的話相當不利,此時即便帶寬再高也無濟于事。
 

帶寬匹配的問題

計算機系統(tǒng)中存在形形色色的總線,這不可避免帶來總線速度匹配問題,其中最常出問題的地方在于前端總線和內存、南北橋總線和PCI總線。
前端總線與內存匹配與否對整套系統(tǒng)影響最大,最理想的情況是前端總線帶寬與內存帶寬相等,而且內存延遲要盡可能低。在Pentium4剛推出的時候,Intel采用RDRAM內存以達到同前端總線匹配,但RDRAM成本昂貴,嚴重影響推廣工作,Intel曾推出搭配PC133SDRAM的845芯片組,但SDRAM僅能提供1.06GB/s的帶寬,僅相當于400MHz前端總線帶寬的1/3,嚴重不匹配導致系統(tǒng)性能大幅度下降;后來,Intel推出支持DDR266的845D才勉強好轉,但仍未實現(xiàn)與前端總線匹配;接著,Intel將P4前端總線提升到533MHz、帶寬增長至5.4GB/s,雖然配套芯片組可支持DDR333內存,可也僅能滿足1/2而已;P4的前端總線提升到800MHz,而配套的865/875P芯片組可支持雙通道DDR400——這個時候才實現(xiàn)匹配的理想狀態(tài),當然,這個時候繼續(xù)提高內存帶寬意義就不是特別大,因為它超出了前端總線的接收能力。
南北橋總線帶寬曾是一個尖銳的問題,早期的芯片組都是通過PCI總線來連接南北橋,而它所能提供的帶寬僅僅只有133MB/s,若南橋連接兩個ATA-100硬盤、100M網(wǎng)絡、IEEE1394接口......區(qū)區(qū)133MB/s帶寬勢必形成嚴重的瓶頸,為此,各芯片組廠商都發(fā)展出不同的南北橋總線方案,如Intel的Hub-Link、VIA的V-Link、SiS的MuTIOL,還有AMD的HyperTransport等等,它們的帶寬都大大超過了133MB/s,最高紀錄已超過1GB/s,瓶頸效應已不復存在。
PCI總線帶寬不足還是比較大的矛盾,PC上使用的PCI總線均為32位、33MHz類型,帶寬133MB/s,而這區(qū)區(qū)133MB/s必須滿足網(wǎng)絡、硬盤控制卡(如果有的話)之類的擴展需要,一旦使用千兆網(wǎng)絡,瓶頸馬上出現(xiàn),業(yè)界打算自2004年開始以PCIExpress總線來全面取代PCI總線,屆時PCI帶寬不足的問題將成為歷史。
 

帶寬在數(shù)字信號系統(tǒng)中的意義

數(shù)字信號系統(tǒng)中,帶寬用來標識通訊線路所能傳送數(shù)據(jù)的能力,即在單位時間內通過網(wǎng)絡中某一點的最高數(shù)據(jù)率,常用的單位為bps(又稱為比特率---bit per second,每秒多少比特)。在日常生活中中描述帶寬時常常把bps省略掉,例如:帶寬為4M,完成的稱為應為4Mbps。
針對于帶寬成本降低,用戶接入速率也是越來越高,從最初的撥號上網(wǎng),到20M甚至100M光纖。
但是隨著計算機的發(fā)展,用戶對‘帶寬’的認識也應該有更大的提高。
一般來說,帶寬是以 bit(比特)表示,而電信,聯(lián)通,移動等運營商在推廣的時候往往忽略了這個單位。
正常換算情況如下:
1Mbit=128KB
2Mbit=256KB
(以此類推)
而換算后的速度才是您真實上網(wǎng)的速度
也就是說,如果你從你的運營商開通的帶寬是10M,那么代入計算公式,以上面換算的1M來計量
則為:
(1M=1024K)
1M/128K=1024/128=8
10/8=1.25M
也就是說你如果開通10M帶寬,可以達到最高1.25M的速度
一般來說,一臺計算機觀看電影,玩游戲等,4M帶寬足夠。但是如果你需要經(jīng)常下載大文件,建議還是使用更高帶寬

在模擬信號系統(tǒng)中的意義

在模擬信號系統(tǒng)中,帶寬用來標識傳輸信號所占有的頻率寬度,這個寬度由傳輸信號的最高頻率和最低頻率決定,兩者之差就是帶寬值,因此又被稱為信號帶寬或者載頻帶寬,單位為Hz。
帶寬其實就是信號所占用的頻譜的度量,可以看做是一種與空間相關的量。與之相比,信號的傳輸速率就是一種與空間和時間都相關的物理量,定義為單位時間內在信道上傳輸?shù)臄?shù)據(jù)量。
為了合理使用頻譜資源,國際電信聯(lián)盟(ITU)為每種通信系統(tǒng)都規(guī)定了頻率范圍,這種頻率范圍又稱為頻段,而頻段的頻譜寬度又被稱之為工作帶寬。例如GSM的工作帶寬為25 MHz,WCDMACDMA均為30 MHz。
 

帶寬在人力資源領域中的意義

所謂“帶寬”就是指各等級薪資的最大值與最小值之差,又將其成為薪值的分布區(qū)間。一般而言,由于職位高低不同,職位或職層所涉及技能與職責的復雜性程度也會有所不同,因此,各職等級的薪資帶寬也就應該有所不同(薪資帶寬應當能反應一個職位或職層的任職者由一個初入者到能力與業(yè)績十分突出者所需要的難度大?。H绻毼换蚵殞铀婕暗募寄芘c職責能在較短時間內得以掌握,則此等級薪資的帶寬較窄;而如果職位或職層所涉及的技能和職責需要學習的時間較長,繼續(xù)提升的機會也較小,則其相應的帶寬較大。根據(jù)這個理論,變革者在設計職等帶寬時應當堅持的原則是:職等越高,其帶寬就應越大,因為職等越高,任職者勝任的速度就越慢。
 

帶寬在顯示器系統(tǒng)中的意義

在采用正弦輸入研究傳感器頻率動態(tài)特性時,常用頻率特性和相頻特性來描述傳感器的動態(tài)特性,其重要指標是頻帶寬度,簡稱帶寬。
帶寬(Bandwidth)是顯示器視頻放大器通頻寬度的簡稱,指的是電子槍在一秒鐘內掃描過像素(Pixel)的總個數(shù),即單位時間內所有行(水平方向)掃描線和場(豎直方向)掃描線上顯示出的像素個數(shù)之總和,單位是MHz。[1]
帶寬的詳細計算公式: B=r(x) ×r(y) ×V
B表示顯示器的帶寬
r(x)表示每條水平掃描線上的圖素個數(shù)
r(y)表示每幀畫面的水平掃描線數(shù)
V 表示每秒畫面刷新率(即場頻)


內容來自百科網(wǎng)