當(dāng)前位置:首頁 > 科技文檔 > 工業(yè)通用 > 正文

基于改進(jìn)DBNet-RNN的聲級計(jì)讀數(shù)識別方法

計(jì)量學(xué)報(bào) 頁數(shù): 9 2024-08-05
摘要: 為提高聲級計(jì)校準(zhǔn)工作效率,提出了一種基于深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的聲級計(jì)圖像讀數(shù)檢測與識別方法。讀數(shù)檢測模型以DBNet為基礎(chǔ)模型,將ShuffleNetV2作為主干網(wǎng)絡(luò),顯著降低模型參數(shù)量;為提高讀數(shù)區(qū)域檢測精度,引入高效通道注意力ECA模塊,提高網(wǎng)絡(luò)對于通道特征的提取能力,優(yōu)化后的模型在保持精度的同時(shí)參數(shù)量縮減為原來的15.4%,計(jì)算量縮減為原來的67.4%。讀數(shù)識別模型以CRNN... (共9頁)

開通會員,享受整站包年服務(wù)立即開通 >
科技文檔
數(shù)學(xué) 力學(xué) 化學(xué) 金融 證券 保險(xiǎn) 投資 會計(jì) 審計(jì) 園藝 林業(yè) 旅游 體育 物理學(xué) 生物學(xué) 天文學(xué) 氣象學(xué) 海洋學(xué) 地質(zhì)學(xué) 新能源 金屬學(xué) 農(nóng)藝學(xué) 農(nóng)作物 管理學(xué) 領(lǐng)導(dǎo)學(xué) 自然科學(xué) 系統(tǒng)科學(xué) 資源科學(xué) 無機(jī)化工 有機(jī)化工 燃料化工 化學(xué)工業(yè) 材料科學(xué) 礦業(yè)工程 冶金工業(yè) 安全科學(xué) 環(huán)境科學(xué) 工業(yè)通用 機(jī)械工業(yè) 無線電子 電信技術(shù) 鐵路運(yùn)輸 汽車工業(yè) 船舶工業(yè) 動(dòng)力工程 電力工業(yè) 農(nóng)業(yè)科學(xué) 農(nóng)業(yè)工程 植物保護(hù) 動(dòng)物醫(yī)學(xué) 教育理論 學(xué)前教育 初等教育 中等教育 高等教育 職業(yè)教育 成人教育 自然地理 地球物理 經(jīng)濟(jì)統(tǒng)計(jì) 農(nóng)業(yè)經(jīng)濟(jì) 工業(yè)經(jīng)濟(jì) 交通經(jīng)濟(jì) 企業(yè)經(jīng)濟(jì) 文化經(jīng)濟(jì) 信息經(jīng)濟(jì) 貿(mào)易經(jīng)濟(jì) 財(cái)政稅收 市場研究 科學(xué)研究 互聯(lián)網(wǎng) 自動(dòng)化 輕工業(yè) 核科學(xué) 服務(wù)業(yè) 石油然氣 服務(wù)業(yè) 野生動(dòng)物 水產(chǎn)漁業(yè) 硬件 儀器儀表 航空航天 武器軍事 公路運(yùn)輸 水利水電 建筑科學(xué) 軟件